Thursday, February 5, 2026

Operator Precedence | GCE AL ICT | Unit 4 | Boolean Logic and Digital Circuit | in Tamil | English and தமிழில் Medium Notes Questions

AL ICT – Unit 4: Boolean Logic & Digital Circuits

Operator Precedence (Beginner Friendly Explanation)

This lesson explains Operator Precedence in Boolean Logic step by step, using simple examples from the AL ICT syllabus.


1. What is Operator Precedence?

Operator precedence means the order in which operations are performed in a Boolean expression.

Just like in Mathematics, some operations are done before others.


2. BODMAS Rule (Revision)

In Mathematics, we use BODMAS:

  • B – Brackets
  • O – Orders (powers, roots)
  • D – Division
  • M – Multiplication
  • A – Addition
  • S – Subtraction

Example:

2 + 3 × 4 = 14 (not 20, because multiplication is done first)


3. Boolean Operator Precedence (AL ICT)

In Boolean Algebra, the precedence order is:

  1. NOT ( ' )
  2. AND ( . )
  3. OR ( + )
  4. XOR ( ⊕ )

Brackets ( ) always have highest priority.


4. Understanding Basic Boolean Operators

  • AND ( . ) → Both must be TRUE
  • OR ( + ) → At least one TRUE
  • NOT ( ' ) → Reverse the value
  • XOR ( ⊕ ) → Only one TRUE (not both)

5. Expression: x + y.z

According to precedence, AND (.) is done before OR (+).

Step-by-step:

  1. First calculate y.z
  2. Then add x + (result)

So:

x + y.z = x + (y.z)


6. Expression: (x + y).z

Brackets have the highest priority.

Steps:

  1. Solve inside the bracket → x + y
  2. Then AND with z

So:

(x + y).z

Note: This is NOT the same as x + y.z


7. Expression: x + y ⊕ z.x

Operator precedence:

  1. AND (.)
  2. XOR (⊕)
  3. OR (+)

Steps:

  1. First calculate z.x
  2. Then calculate y ⊕ (z.x)
  3. Finally calculate x + (result)

8. Real-Life Example (Road Crossing)

Boolean Function:

F = X.Y + Z

Meaning:

  • X = Right side clear
  • Y = Left side clear
  • Z = Signal light OFF

Interpretation:

You can cross the road if:

  • Right side AND Left side are clear, OR
  • Signal light is OFF

Why AND first? Because both sides must be clear.


9. How to Make a Truth Table

Step 1: Identify Inputs

Inputs are variables like X, Y, Z

If you have:

X and X'

Still only ONE input (X), because X' is just NOT X.


Step 2: Number of Rows

Formula:

2ⁿ (n = number of inputs)

  • 1 input → 2 rows
  • 2 inputs → 4 rows
  • 3 inputs → 8 rows

Step 3: Fill Input Values

X Y
0 0
0 1
1 0
1 1

10. Boolean Function Components

LHS and RHS

Example:

F = X.Y + Z

  • LHS → F
  • RHS → X.Y + Z

Operators

  • +
  • .
  • '

Variables

X, Y, Z


Terms

Separated by OR (+)

Example:

X.Y + Z → Terms are:

  • X.Y
  • Z

11. Min Term (SOP – Sum of Products)

Min Term:

  • Uses AND between variables
  • All variables appear

Example:

X'.Y.Z

SOP = Sum (OR) of product (AND) terms


12. Max Term (POS – Product of Sums)

Max Term:

  • Uses OR between variables
  • All variables appear

Example:

(X + Y' + Z)

POS = Product (AND) of sum (OR) terms


13. Standard Boolean Functions

  • Standard SOP → Only min terms
  • Standard POS → Only max terms

14. Practice Questions

  1. Find the precedence order in: X + Y.Z'
  2. Rewrite using brackets: X + Y.Z
  3. Identify inputs in: A + A'
  4. Write SOP form for: F = X.Y + X'.Z

Truth Table for F = (X'.Y') + (X' + Y')

X Y X' Y' X'.Y' X' + Y' F
00 11 1 1 1
01 10 0 1 1
10 01 0 1 1
11 00 0 0 0

Final Output Column (F): 1, 1, 1, 0

Truth Table for F = AB C' + A'B' C

ABC C' AB C' A'B' C F
0001000
0010011
0101000
0110000
1001000
1010000
1101101
1110000

Truth Table for F = X'.Y + (X + Z')

XYZ X'Z' X'.YX + Z'F
00011011
00110000
01011111
01110101
10001011
10100011
11001011
11100011

Truth Table for F = X + (Y ⊕ X.Z)

XYZ X.ZY ⊕ X.ZF
000000
001000
010011
011011
100001
101111
110011
111101

End of Lesson – Unit 4 Boolean Logic

No comments:

Post a Comment