Tuesday, February 17, 2026

Mastering Karnaugh Maps (K-Maps) for GCE A/L K-Maps | AL ICT | Unit 4 | Boolean Logic and Digital Circuit | in Tamil | родрооிро┤ிро▓் English Medium

Mastering Karnaugh Maps (K-Maps) for GCE A/L

Welcome! If you are finding Boolean Algebra confusing, K-Maps are your best friend. They turn complex algebra into a visual puzzle. Here is everything you need to know, step-by-step.

1. What is the Purpose?

The main purpose of a K-Map is to simplify Boolean equations. Instead of using long algebraic laws (like De Morgan's or Distributive laws), we use a visual grid to group terms together and eliminate variables.

2. Truth Tables vs. K-Maps

  • Normal Truth Tables (1D): These are lists. You read them from top to bottom. They show every possible input combination.
  • K-Maps (2D): These are grids (tables). We take that 1D list and "fold" it into a 2D shape. This allows us to see patterns (neighbors) that are hard to see in a list.

3. SOP vs. POS

There are two ways to write equations, and two ways to use K-Maps:

  • SOP (Sum of Products): You look for Minterms. In the K-Map, you place 1s and group the 1s.
  • POS (Product of Sums): You look for Maxterms. In the K-Map, you place 0s and group the 0s.

Note: For this guide, we will focus on SOP (Grouping 1s) as it is the most common method for beginners.

4. Grid Sizes (Dimensions)

The size of your K-Map depends on the number of variables (inputs). For 3 Variables (x, y, z):

Total combinations = $2^3 = 8$.

You can arrange these 8 cells in different 2D shapes:

  • 1 row × 8 columns (1x8)
  • 8 rows × 1 column (8x1)
  • 2 rows × 4 columns (2x4) (Most Common for 3 variables)
  • 4 rows × 2 columns (4x2)

5. The Secret Weapon: Gray Code

This is the most important rule in K-Maps. When labeling the rows and columns, you cannot use normal binary counting (00, 01, 10, 11). You must use Gray Code.

Rule: Between any two adjacent numbers, only one bit (value) changes.

Sequence for 2 bits: 00 → 01 → 11 → 10

  • 00 to 01: Only the right bit changed.
  • 01 to 11: Only the left bit changed.
  • 11 to 10: Only the right bit changed.

If you do not use Gray Code, your K-Map will not work!


6. Step-by-Step Example

Let's solve this function together:

F(x,y,z) = (x'y'z) + (x'yz) + (xy'z) + (xyz') + (xyz)

Step 1: Convert to Binary (Minterms)

Look at each term. If a variable has a bar (like x'), it is 0. If it has no bar (like x), it is 1.

  • x'y'z → 0 0 1 (Decimal 1)
  • x'yz → 0 1 1 (Decimal 3)
  • xy'z → 1 0 1 (Decimal 5)
  • xyz' → 1 1 0 (Decimal 6)
  • xyz → 1 1 1 (Decimal 7)

Step 2: Create the Truth Table

We list all 8 combinations (0 to 7). We put a 1 in the Output column if the number matches our list above (1, 3, 5, 6, 7). Otherwise, put a 0.

Decimal x y z Output (F) Note
00000
10011From x'y'z
20100
30111From x'yz
41000
51011From xy'z
61101From xyz'
71111From xyz

Step 3: Draw the K-Map Grid

We will use a 2 rows × 4 columns grid.

  • Rows (x): 0, 1
  • Columns (yz): 00, 01, 11, 10 (Remember Gray Code!)
x \ yz 00 01 11 10
0 0 1 1 0
1 0 1 1 1

We placed 1s in cells 1, 3, 5, 6, and 7 based on our Truth Table.

Step 4: Grouping (The Magic Step)

Rules for grouping:

  1. Groups must contain $2^n$ cells (1, 2, 4, 8, 16...).
  2. Groups must be rectangular or square.
  3. Try to make groups as large as possible.
  4. Every 1 must be inside at least one group.
  5. Groups can overlap.

Let's group our example:

  1. Group A (Red): Look at the middle two columns (01 and 11). We have four 1s forming a square (Cells 1, 3, 5, 7).
    Why? In this group, x changes (0 to 1) and y changes (0 to 1). But z is always 1.
    Result: z
  2. Group B (Blue): Look at the bottom right corner. We have two 1s (Cells 6 and 7).
    Why? In this group, z changes (0 to 1). But x is always 1 and y is always 1.
    Result: xy

Step 5: Final Equation

Combine the results of the groups with an OR (+) sign.

F = z + xy

This is much simpler than the original long equation!

7. How to do POS (Product of Sums)

If the question asks for POS, or gives you Maxterms (0s):

  1. Fill the K-Map with 0s instead of 1s (wherever the function is false).
  2. Group the 0s together.
  3. When writing the equation:
    • If a variable is 0 in the group, write it normally (e.g., A).
    • If a variable is 1 in the group, write it with a bar (e.g., A').
    • Combine variables with OR (+), and combine groups with AND (·).

K-Map Exercises: SOP & POS

Now that we understand the basics, let's solve specific problems step-by-step for both Sum of Products (SOP) and Product of Sums (POS).

Exercise 1: Sum of Products (SOP)

Goal: Find the simplified equation by grouping 1s.

Problem:

F = x'y'z + x'yz + xy'z + xyz' + xyz

Step 1: Identify Minterms (Where F = 1)

Convert each term to binary. Remember: No bar = 1, Bar = 0.

  • x'y'z → 001 → m1
  • x'yz → 011 → m3
  • xy'z → 101 → m5
  • xyz' → 110 → m6
  • xyz → 111 → m7

Notation: We can write this function as F(x,y,z) = ∑m(1, 3, 5, 6, 7)

Step 2: Fill the K-Map

We use a 2x4 grid. Place a 1 in cells 1, 3, 5, 6, 7. Place 0 everywhere else.

x \ yz 00 01 11 10
0 0 1 1 0
1 0 1 1 1

Step 3: Grouping

We look for rectangles of 1s.

  1. Group 1 (Quad): The four 1s in the middle columns (Cells 1, 3, 5, 7).
    • x changes (0→1), y changes (0→1).
    • z stays 1.
    • Term: z
  2. Group 2 (Pair): The two 1s on the bottom right (Cells 6, 7).
    • z changes (0→1).
    • x stays 1, y stays 1.
    • Term: xy

Final SOP Answer:

F = z + xy

Exercise 2: Product of Sums (POS)

Goal: Find the simplified equation by grouping 0s.

In POS, we look at the Maxterms.
Rule: Uncomplemented variable = 0, Complemented variable = 1.

Problem:

F = (x+y+z') · (x+y'+z') · (x'+y+z') · (x'+y'+z')

Step 1: Identify Maxterms (Where F = 0)

Convert the sums to binary to find which cells get a 0.

  • (x+y+z') → 001 → M1
  • (x+y'+z') → 011 → M3
  • (x'+y+z') → 101 → M5
  • (x'+y'+z') → 111 → M7

Notation: F(x,y,z) = ∏M(1, 3, 5, 7)

Step 2: Fill the K-Map with 0s

Place 0 in cells 1, 3, 5, 7. Place 1 in the remaining cells (0, 2, 4, 6).

x \ yz 00 01 11 10
0 1 0 0 1
1 1 0 0 1

Step 3: Grouping the 0s

We see a vertical block of four 0s in the middle columns (1, 3, 5, 7).

  • x changes (0→1).
  • y changes (0→1).
  • z' is constant (which means z=1 in binary, so we write z' in the answer).

Note for POS: If the constant value in the group is 1, write the variable with a bar. If 0, write without a bar.

Final POS Answer:

F = z'

4-Variable Notation Example

For 4 variables (A, B, C, D), the grid size is 4x4 (16 cells). The logic remains the same.

Example: F(A,B,C,D) = ∏M(3, 5, 7, 8, 10, 11, 12, 13)

This is a POS equation because it uses Capital M (Maxterms).

  1. Draw a 4x4 Grid.
  2. Label rows AB (00, 01, 11, 10) and columns CD (00, 01, 11, 10).
  3. Find cells 3, 5, 7, 8, 10, 11, 12, 13 and put 0s there.
  4. Put 1s in the remaining cells.
  5. Group the 0s to find the POS equation.

Quick Reference Table

Feature SOP (Sum of Products) POS (Product of Sums)
Symbol ∑ m (Small m) ∏ M (Capital M)
K-Map Value Fill with 1s Fill with 0s
Grouping Group the 1s Group the 0s
Variable Rule 1 = Variable, 0 = Bar 0 = Variable, 1 = Bar

Advanced K-Map Exercises & Solutions

Here are detailed step-by-step solutions for the specific Boolean functions you requested. We will cover both SOP (Sum of Products) and POS (Product of Sums) methods.


Problem 1: SOP Simplification

Function:

F(x,y,z) = x'z + xy'z + xyz' + xyz

Step 1: Expand to Minterms

Some terms are missing variables. We need to expand them to find the exact minterms (1s).

  • x'z: Missing y. Expands to x'y'z (001, m1) and x'yz (011, m3).
  • xy'z: Complete. (101, m5).
  • xyz': Complete. (110, m6).
  • xyz: Complete. (111, m7).

Minterms: 1, 3, 5, 6, 7.

Step 2: K-Map Construction

Place 1s in cells 1, 3, 5, 6, 7.

x \ yz 00 01 11 10
0 0 1 1 0
1 0 1 1 1

Step 3: Grouping

  1. Quad (1, 3, 5, 7): The four 1s in the middle columns.
    • x changes, y changes. z is constant 1.
    • Term: z
  2. Pair (6, 7): The two 1s in the bottom right.
    • z changes. x is 1, y is 1.
    • Term: xy

Final Answer:

F = z + xy

Problem 2: SOP with Absorption

Function:

F(x,y,z) = x + xy'z + xyz' + xyz

Step 1: Analyze Terms

This problem has a trick. The term x covers all cases where x is 1.

  • x covers: 100 (m4), 101 (m5), 110 (m6), 111 (m7).
  • The other terms (xy'z, xyz', xyz) are already included inside x.

Effective Minterms: 4, 5, 6, 7.

Step 2: K-Map Construction

Place 1s in the entire bottom row (where x=1).

x \ yz 00 01 11 10
0 0 0 0 0
1 1 1 1 1

Step 3: Grouping

We have one big group of four 1s (Quad) in the bottom row.

  • y changes, z changes.
  • x is constant 1.

Final Answer:

F = x

Problem 3: POS Simplification

Function:

F = (x+y+z') · (x+y'+z') · (x'+y+z') · (x'+y'+z')

Step 1: Identify Maxterms (0s)

Convert sums to binary. Remember: No Bar = 0, Bar = 1.

  • (x+y+z') → 001 → M1
  • (x+y'+z') → 011 → M3
  • (x'+y+z') → 101 → M5
  • (x'+y'+z') → 111 → M7

Maxterms: 1, 3, 5, 7.

Step 2: K-Map Construction

Place 0s in cells 1, 3, 5, 7. Place 1s elsewhere.

x \ yz 00 01 11 10
0 1 0 0 1
1 1 0 0 1

Step 3: Grouping the 0s

We have a vertical Quad of 0s in the middle columns (1, 3, 5, 7).

  • x changes, y changes.
  • z' is constant (In binary, z=1. For POS, 1 becomes z').

Final Answer:

F = z'

Problem 4: SOP from Minterm Notation

Function:

F(x,y,z) = ∑m(1, 2, 3, 5, 7)

Step 1: K-Map Construction

Place 1s in cells 1, 2, 3, 5, 7.

x \ yz 00 01 11 10
0 0 1 1 1
1 0 1 1 0

Step 2: Grouping

  1. Quad (1, 3, 5, 7): Middle columns.
    • Term: z
  2. Pair (2, 3): Top row, right side.
    • x is 0, y is 1. z changes.
    • Term: x'y

Final Answer:

F = z + x'y

Problem 5: POS from Maxterm Notation (4 Variables)

Function:

F(A,B,C,D) = ∏M(3, 5, 7, 8, 10, 11, 12, 13)

This is a 4-variable map (4x4 Grid). We group the 0s.

Step 1: K-Map Construction

Place 0s in cells: 3, 5, 7, 8, 10, 11, 12, 13.

AB \ CD 00 01 11 10
00 1 1 0 1
01 1 0 0 1
11 0 0 1 1
10 0 1 0 0

Step 2: Grouping the 0s

We need to cover all 0s with the fewest groups possible.

  1. Group 1 (Pair 3, 7): Cells 0011 and 0111.
    • A=0, C=1, D=1.
    • Term: (A + C' + D')
  2. Group 2 (Pair 5, 13): Cells 0101 and 1101.
    • B=1, C=0, D=1.
    • Term: (B' + C + D')
  3. Group 3 (Pair 8, 12): Cells 1000 and 1100.
    • A=1, C=0, D=0.
    • Term: (A' + C + D)
  4. Group 4 (Pair 10, 11): Cells 1010 and 1011.
    • A=1, B=0, C=1.
    • Term: (A' + B + C')

Final Answer:

F = (A + C' + D') · (B' + C + D') · (A' + C + D) · (A' + B + C')

GCE A/L роХ்роХாрой Karnaugh Maps (K-Maps) роХро▒்ро▒ро▓்

рокூро▓ிропрой் роЗропро▒்роХрогிродроо் (Boolean Algebra) роХுро┤рок்рокрооாроХ роЗро░ுрои்родாро▓், K-Maps роЙроЩ்роХро│ுроХ்роХு роЙродро╡ுроо். роЗродு роЪிроХ்роХро▓ாрой роХрогிродрод்родை роТро░ு роХாроЯ்роЪி рокுродிро░் рокோро▓ рооாро▒்ро▒ுроо். роЗроЩ்роХே роТро╡்ро╡ொро░ு рокроЯிропாроХ роиீроЩ்роХро│் родெро░ிрои்родு роХொро│்ро│ ро╡ேрог்роЯிроп роЕройைрод்родுроо் роЙро│்ро│рой.

1. роЗродрой் роиோроХ்роХроо் роОрой்рой?

K-Map роЗрой் рооுроХ்роХிроп роиோроХ்роХроо் рокூро▓ிропрой் роЪроорой்рокாроЯுроХро│ை роЪுро░ுроХ்роХுро╡родாроХுроо் (Simplify Boolean equations). роиீрог்роЯ роЗропро▒்роХрогிрод ро╡ிродிроХро│ைрок் (De Morgan's or Distributive laws) рокропрой்рокроЯுрод்родுро╡родро▒்роХுрок் рокродிро▓ாроХ, роТро░ு роХாроЯ்роЪி роХроЯ்роЯрод்родைрок் (visual grid) рокропрой்рокроЯுрод்родி роЙро▒ுрок்рокுроХро│ை роТрой்ро▒ிрогைрод்родு рооாро▒ிроХро│ை роиீроХ்роХுроХிро▒ோроо்.

2. рооெроп்роородிрок்рокு роЕроЯ்роЯро╡рогை vs K-Maps

  • роЪாродாро░рог рооெроп்роородிрок்рокு роЕроЯ்роЯро╡рогை (1D - Truth Tables): роЗро╡ை рокроЯ்роЯிропро▓்роХро│். роЗро╡ро▒்ро▒ை рооேро▓ிро░ுрои்родு роХீро┤ாроХ ро╡ாроЪிроХ்роХ ро╡ேрог்роЯுроо். роЗро╡ை роЪாрод்родிропрооாрой роЙро│்ро│ீроЯுроХро│ிрой் роХро▓ро╡ைроХро│ைроХ் роХாроЯ்роЯுроХிрой்ро▒рой.
  • K-Maps (2D): роЗро╡ை роЕроЯ்роЯро╡рогைроХро│் (Grids). роЕрои்род 1D рокроЯ்роЯிропро▓ை роОроЯுрод்родு 2D ро╡роЯிро╡рооாроХ "роороЯிроХ்роХிро▒ோроо்". роЗродு рокроЯ்роЯிропро▓ிро▓் рокாро░்роХ்роХ роХроЯிройрооாрой ро╡роЯிро╡роЩ்роХро│ை (patterns) рокாро░்роХ்роХ роЙродро╡ுроХிро▒родு.

3. SOP vs POS

роЪроорой்рокாроЯுроХро│ை роОро┤ுрод роЗро░рог்роЯு ро╡ро┤ிроХро│் роЙро│்ро│рой, K-Maps рокропрой்рокроЯுрод்родро╡ுроо் роЗро░рог்роЯு ро╡ро┤ிроХро│் роЙро│்ро│рой:

  • SOP (Sum of Products): роиீроЩ்роХро│் Minterms роХро│ைрод் родேроЯுроХிро▒ீро░்роХро│். K-Map роЗро▓், роиீроЩ்роХро│் 1s роР ро╡ைрод்родு, 1s роР родொроХுроХ்роХ ро╡ேрог்роЯுроо் (Group the 1s).
  • POS (Product of Sums): роиீроЩ்роХро│் Maxterms роХро│ைрод் родேроЯுроХிро▒ீро░்роХро│். K-Map роЗро▓், роиீроЩ்роХро│் 0s роР ро╡ைрод்родு, 0s роР родொроХுроХ்роХ ро╡ேрог்роЯுроо் (Group the 0s).

роХுро▒ிрок்рокு: роЗрои்род ро╡ро┤ிроХாроЯ்роЯிропிро▓், родொроЯроХ்роХ роиிро▓ை рооாрогро╡ро░்роХро│ுроХ்роХு рооிроХро╡ுроо் рокொродுро╡ாрой рооுро▒ைропாрой SOP (1s роР родொроХுрод்родро▓்) рооீродு роХро╡ройроо் роЪெро▓ுрод்родுро╡ோроо்.

4. роХроЯ்роЯ роЕро│ро╡ுроХро│் (Dimensions)

роЙроЩ்роХро│் K-Map роЗрой் роЕро│ро╡ு рооாро▒ிроХро│ிрой் (inputs) роОрог்рогிроХ்роХைропைрок் рокொро▒ுрод்родродு. 3 рооாро▒ிроХро│் (x, y, z) роХ்роХு:

рооொрод்род роХро▓ро╡ைроХро│் = $2^3 = 8$.

роЗрои்род 8 роЪெро▓்роХро│ை ро╡ெро╡்ро╡ேро▒ு 2D ро╡роЯிро╡роЩ்роХро│ிро▓் роЕрооைроХ்роХро▓ாроо்:

  • 1 ро╡ро░ிроЪை × 8 роиிро░ро▓்роХро│் (1x8)
  • 8 ро╡ро░ிроЪைроХро│் × 1 роиிро░ро▓் (8x1)
  • 2 ро╡ро░ிроЪைроХро│் × 4 роиிро░ро▓்роХро│் (2x4) (3 рооாро▒ிроХро│ுроХ்роХு роЗродுро╡ே рооிроХро╡ுроо் рокொродுро╡ாройродு)
  • 4 ро╡ро░ிроЪைроХро│் × 2 роиிро░ро▓்роХро│் (4x2)

5. роЗро░роХроЪிроп роЖропுродроо்: Gray Code

роЗродு K-Maps роЗро▓் рооிроХ рооுроХ்роХிропрооாрой ро╡ிродிропாроХுроо். ро╡ро░ிроЪைроХро│் рооро▒்ро▒ுроо் роиிро░ро▓்роХро│ுроХ்роХு рокெропро░ிроЯுроо்рокோродு, роЪாродாро░рог роЗро░ுроо роОрог்рогிроХ்роХைропைрок் (00, 01, 10, 11) рокропрой்рокроЯுрод்родроХ்роХூроЯாродு. роиீроЩ்роХро│் Gray Code роРрок் рокропрой்рокроЯுрод்род ро╡ேрог்роЯுроо்.

ро╡ிродி: роОрои்род роЗро░рог்роЯு роЕроЯுрод்родроЯுрод்род роОрог்роХро│ுроХ்роХுроо் роЗроЯைропிро▓், роТро░ே роТро░ு рокிроЯ் роороЯ்роЯுрооே (value) рооாро▒ ро╡ேрог்роЯுроо்.

2 рокிроЯ்роХро│ுроХ்роХாрой ро╡ро░ிроЪை: 00 → 01 → 11 → 10

  • 00 рооுродро▓் 01 ро╡ро░ை: ро╡ро▓родு рокிроЯ் роороЯ்роЯுроо் рооாро▒ிропродு.
  • 01 рооுродро▓் 11 ро╡ро░ை: роЗроЯродு рокிроЯ் роороЯ்роЯுроо் рооாро▒ிропродு.
  • 11 рооுродро▓் 10 ро╡ро░ை: ро╡ро▓родு рокிроЯ் роороЯ்роЯுроо் рооாро▒ிропродு.

роиீроЩ்роХро│் Gray Code роРрок் рокропрой்рокроЯுрод்родாро╡ிроЯ்роЯாро▓், роЙроЩ்роХро│் K-Map ро╡ேро▓ை роЪெроп்ропாродு!


6. рокроЯிрок்рокроЯிропாрой роЙродாро░рогроо்

роЗрои்родроЪ் роЪாро░்рокை (function) роТрой்ро▒ாроХрод் родீро░்рок்рокோроо்:

F(x,y,z) = (x'y'z) + (x'yz) + (xy'z) + (xyz') + (xyz)

рокроЯி 1: роЗро░ுроород்родிро▒்роХு рооாро▒்ро▒ுродро▓் (Minterms)

роТро╡்ро╡ொро░ு роЙро▒ுрок்рокைропுроо் рокாро░ுроЩ்роХро│். роТро░ு рооாро▒ிроХ்роХு рооேро▒்роХோроЯு роЗро░ுрои்родாро▓் (x' рокோрой்ро▒родு), роЕродு 0. рооேро▒்роХோроЯு роЗро▓்ро▓ைропெрой்ро▒ாро▓் (x рокோрой்ро▒родு), роЕродு 1.

  • x'y'z → 0 0 1 (рокродிрой்роороо் 1)
  • x'yz → 0 1 1 (рокродிрой்роороо் 3)
  • xy'z → 1 0 1 (рокродிрой்роороо் 5)
  • xyz' → 1 1 0 (рокродிрой்роороо் 6)
  • xyz → 1 1 1 (рокродிрой்роороо் 7)

рокроЯி 2: рооெроп்роородிрок்рокு роЕроЯ்роЯро╡рогைропை роЙро░ுро╡ாроХ்роХுродро▓் (Truth Table)

роиாроо் роЕройைрод்родு 8 роХро▓ро╡ைроХро│ைропுроо் (0 рооுродро▓் 7 ро╡ро░ை) рокроЯ்роЯிропро▓ிроЯுроХிро▒ோроо். рооேро▓ே роЙро│்ро│ рокроЯ்роЯிропро▓ுроЯрой் (1, 3, 5, 6, 7) роОрог் рокொро░ுрои்родிройாро▓் ро╡ெро│ிропீроЯு роиிро░ро▓ிро▓் 1 роР роЗроЯுроХிро▒ோроо். роЗро▓்ро▓ைропெрой்ро▒ாро▓், 0 роР роЗроЯுроХிро▒ோроо்.

рокродிрой்роороо் (Decimal) x y z ро╡ெро│ிропீроЯு (F) роХுро▒ிрок்рокு
00000
10011x'y'z роЗро▓ிро░ுрои்родு
20100
30111x'yz роЗро▓ிро░ுрои்родு
41000
51011xy'z роЗро▓ிро░ுрои்родு
61101xyz' роЗро▓ிро░ுрои்родு
71111xyz роЗро▓ிро░ுрои்родு

рокроЯி 3: K-Map роХроЯ்роЯрод்родை ро╡ро░ைродро▓்

роиாроо் 2 ро╡ро░ிроЪைроХро│் × 4 роиிро░ро▓்роХро│் роХроЯ்роЯрод்родைрок் рокропрой்рокроЯுрод்родுро╡ோроо்.

  • ро╡ро░ிроЪைроХро│் (x): 0, 1
  • роиிро░ро▓்роХро│் (yz): 00, 01, 11, 10 (Gray Code роР роиிройைро╡ிро▓் роХொро│்роХ!)
x \ yz 00 01 11 10
0 0 1 1 0
1 0 1 1 1

рооெроп்роородிрок்рокு роЕроЯ்роЯро╡рогைропிрой் роЕроЯிрок்рокроЯைропிро▓் 1, 3, 5, 6, рооро▒்ро▒ுроо் 7 роЖроХிроп роЪெро▓்роХро│ிро▓் 1s роР роЗроЯ்роЯுро│்ро│ோроо்.

рокроЯி 4: родொроХுрод்родро▓் (Grouping - The Magic Step)

родொроХுрод்родро▓ுроХ்роХாрой ро╡ிродிроХро│்:

  1. родொроХுрок்рокுроХро│் $2^n$ роЪெро▓்роХро│ைроХ் роХொрог்роЯிро░ுроХ்роХ ро╡ேрог்роЯுроо் (1, 2, 4, 8, 16...).
  2. родொроХுрок்рокுроХро│் роЪெро╡்ро╡роХрооாроХро╡ோ роЕро▓்ро▓родு роЪродுро░рооாроХро╡ோ роЗро░ுроХ்роХ ро╡ேрог்роЯுроо்.
  3. родொроХுрок்рокுроХро│ை рооுроЯிрои்родро╡ро░ை рокெро░ிропродாроХ роЙро░ுро╡ாроХ்роХ рооுропро▒்роЪிроХ்роХро╡ுроо்.
  4. роТро╡்ро╡ொро░ு 1 роЙроо் роХுро▒ைрои்родрокроЯ்роЪроо் роТро░ு родொроХுрок்рокிро▒்роХுро│் роЗро░ுроХ்роХ ро╡ேрог்роЯுроо்.
  5. родொроХுрок்рокுроХро│் роТрой்ро▒ிрой் рооேро▓் роТрой்ро▒ு ро╡ро░ро▓ாроо் (Overlap).

роироородு роЙродாро░рогрод்родை родொроХுрок்рокோроо்:

  1. родொроХுрок்рокு A (роЪிро╡рок்рокு): роироЯுро╡ிро▓் роЙро│்ро│ роЗро░рог்роЯு роиிро░ро▓்роХро│ைрок் рокாро░ுроЩ்роХро│் (01 рооро▒்ро▒ுроо் 11). роиாрой்роХு 1s роЪродுро░рооாроХ роЙро│்ро│рой (роЪெро▓்роХро│் 1, 3, 5, 7).
    роПрой்? роЗрои்род родொроХுрок்рокிро▓், x рооாро▒ுроХிро▒родு (0 рооுродро▓் 1) рооро▒்ро▒ுроо் y рооாро▒ுроХிро▒родு (0 рооுродро▓் 1). роЖройாро▓் z роОрок்рокோродுроо் 1 роЖроХ роЙро│்ро│родு.
    ро╡ிроЯை: z
  2. родொроХுрок்рокு B (роиீро▓роо்): роХீро┤் ро╡ро▓родு рооூро▓ைропைрок் рокாро░ுроЩ்роХро│். роЗро░рог்роЯு 1s роЙро│்ро│рой (роЪெро▓்роХро│் 6 рооро▒்ро▒ுроо் 7).
    роПрой்? роЗрои்род родொроХுрок்рокிро▓், z рооாро▒ுроХிро▒родு (0 рооுродро▓் 1). роЖройாро▓் x роОрок்рокோродுроо் 1 рооро▒்ро▒ுроо் y роОрок்рокோродுроо் 1.
    ро╡ிроЯை: xy

рокроЯி 5: роЗро▒ுродி роЪроорой்рокாроЯு

родொроХுрок்рокுроХро│ிрой் ро╡ிроЯைроХро│ை OR (+) роХுро▒ிропீроЯ்роЯுроЯрой் роЗрогைроХ்роХро╡ுроо்.

F = z + xy

роЗродு роЕроЪро▓் роиீрог்роЯ роЪроорой்рокாроЯ்роЯை ро╡ிроЯ рооிроХро╡ுроо் роОро│ிрооைропாройродு!

7. POS (Product of Sums) роОрок்рокроЯி роЪெроп்ро╡родு

роХேро│்ро╡ி POS роРроХ் роХேроЯ்роЯாро▓் роЕро▓்ро▓родு Maxterms (0s) роХொроЯுрод்родாро▓்:

  1. K-Map роР 1s роХ்роХுрок் рокродிро▓ாроХ 0s роХொрог்роЯு роиிро░рок்рокро╡ுроо் (роЪாро░்рокு рокொроп்ропாроХ роЗро░ுроХ்роХுроо் роЗроЯроЩ்роХро│ிро▓்).
  2. 0s роР роТрой்ро▒ாроХ родொроХுроХ்роХро╡ுроо்.
  3. роЪроорой்рокாроЯ்роЯை роОро┤ுродுроо்рокோродு:
    • родொроХுрок்рокிро▓் роТро░ு рооாро▒ி 0 роЖроХ роЗро░ுрои்родாро▓், роЕродை роЪாродாро░рогрооாроХ роОро┤ுродро╡ுроо் (роЙродா: A).
    • родொроХுрок்рокிро▓் роТро░ு рооாро▒ி 1 роЖроХ роЗро░ுрои்родாро▓், роЕродை рооேро▒்роХோроЯுроЯрой் роОро┤ுродро╡ுроо் (роЙродா: A').
    • рооாро▒ிроХро│ை OR (+) рооூро▓рооுроо், родொроХுрок்рокுроХро│ை AND (·) рооூро▓рооுроо் роЗрогைроХ்роХро╡ுроо்.

K-Map рокропிро▒்роЪிроХро│்: SOP & POS

роЕроЯிрок்рокроЯைроХро│ைрок் рокுро░ிрои்родு роХொрог்роЯோроо், роЗрок்рокோродு Sum of Products (SOP) рооро▒்ро▒ுроо் Product of Sums (POS) роЖроХிроп роЗро░рог்роЯிро▒்роХுроо் роХுро▒ிрок்рокிроЯ்роЯ ╧А╧Б╬┐╬▓்ро│роо்роХро│ை рокроЯிрок்рокроЯிропாроХрод் родீро░்рок்рокோроо்.

рокропிро▒்роЪி 1: Sum of Products (SOP)

роЗро▓роХ்роХு: 1s роР родொроХுрок்рокродрой் рооூро▓роо் роЪுро░ுроХ்роХрок்рокроЯ்роЯ роЪроорой்рокாроЯ்роЯைроХ் роХрог்роЯро▒ிродро▓்.

рокிро░роЪ்роЪிройை:

F = x'y'z + x'yz + xy'z + xyz' + xyz

рокроЯி 1: Minterms роР роЕроЯைропாро│роо் роХாрогுродро▓் (F = 1 роЗроЯроЩ்роХро│்)

роТро╡்ро╡ொро░ு роЙро▒ுрок்рокைропுроо் роЗро░ுроород்родிро▒்роХு (binary) рооாро▒்ро▒ро╡ுроо். роиிройைро╡ிро▓் роХொро│்роХ: рооேро▒்роХோроЯு роЗро▓்ро▓ை = 1, рооேро▒்роХோроЯு роЙрог்роЯு = 0.

  • x'y'z → 001 → m1
  • x'yz → 011 → m3
  • xy'z → 101 → m5
  • xyz' → 110 → m6
  • xyz → 111 → m7

роХுро▒ிропீроЯு: роЗрои்родроЪ் роЪாро░்рокை роЗро╡்ро╡ாро▒ு роОро┤ுродро▓ாроо் F(x,y,z) = ∑m(1, 3, 5, 6, 7)

рокроЯி 2: K-Map роР роиிро░рок்рокுродро▓்

роиாроо் 2x4 роХроЯ்роЯрод்родைрок் рокропрой்рокроЯுрод்родுроХிро▒ோроо். 1, 3, 5, 6, 7 роЖроХிроп роЪெро▓்роХро│ிро▓் 1 роР роЗроЯро╡ுроо். рооро▒்ро▒ роЗроЯроЩ்роХро│ிро▓் 0 роР роЗроЯро╡ுроо்.

x \ yz 00 01 11 10
0 0 1 1 0
1 0 1 1 1

рокроЯி 3: родொроХுрод்родро▓் (Grouping)

роиாроо் 1s роЗрой் роЪெро╡்ро╡роХроЩ்роХро│ைрод் родேроЯுроХிро▒ோроо்.

  1. родொроХுрок்рокு 1 (Quad - роиாрой்роХு): роироЯு роиிро░ро▓்роХро│ிро▓் роЙро│்ро│ роиாрой்роХு 1s (роЪெро▓்роХро│் 1, 3, 5, 7).
    • x рооாро▒ுроХிро▒родு (0→1), y рооாро▒ுроХிро▒родு (0→1).
    • z рооாро▒ாрооро▓் 1 роЖроХ роЙро│்ро│родு.
    • роЙро▒ுрок்рокு: z
  2. родொроХுрок்рокு 2 (Pair - роЗро░рог்роЯு): роХீро┤் ро╡ро▓родு рооூро▓ைропிро▓் роЙро│்ро│ роЗро░рог்роЯு 1s (роЪெро▓்роХро│் 6, 7).
    • z рооாро▒ுроХிро▒родு (0→1).
    • x рооாро▒ாрооро▓் 1, y рооாро▒ாрооро▓் 1.
    • роЙро▒ுрок்рокு: xy

роЗро▒ுродி SOP ро╡ிроЯை:

F = z + xy

рокропிро▒்роЪி 2: Product of Sums (POS)

роЗро▓роХ்роХு: 0s роР родொроХுрок்рокродрой் рооூро▓роо் роЪுро░ுроХ்роХрок்рокроЯ்роЯ роЪроорой்рокாроЯ்роЯைроХ் роХрог்роЯро▒ிродро▓்.

POS роЗро▓், роиாроо் Maxterms роРрок் рокாро░்роХ்роХிро▒ோроо்.
ро╡ிродி: роиிро░рок்рокு роЗро▓்ро▓ாрод рооாро▒ி = 0, роиிро░рок்рокு роЙро│்ро│ рооாро▒ி = 1.

рокிро░роЪ்роЪிройை:

F = (x+y+z') · (x+y'+z') · (x'+y+z') · (x'+y'+z')

рокроЯி 1: Maxterms роР роЕроЯைропாро│роо் роХாрогுродро▓் (F = 0 роЗроЯроЩ்роХро│்)

роОрои்род роЪெро▓்роХро│ிро▓் 0 ро╡ро░ுроо் роОрой்рокродைроХ் роХрог்роЯро▒ிроп роХூроЯ்роЯро▓்роХро│ை роЗро░ுроород்родிро▒்роХு рооாро▒்ро▒ро╡ுроо்.

  • (x+y+z') → 001 → M1
  • (x+y'+z') → 011 → M3
  • (x'+y+z') → 101 → M5
  • (x'+y'+z') → 111 → M7

роХுро▒ிропீроЯு: F(x,y,z) = ∏M(1, 3, 5, 7)

рокроЯி 2: K-Map роР 0s роХொрог்роЯு роиிро░рок்рокுродро▓்

1, 3, 5, 7 роЖроХிроп роЪெро▓்роХро│ிро▓் 0 роР роЗроЯро╡ுроо். рооீродрооுро│்ро│ роЪெро▓்роХро│ிро▓் (0, 2, 4, 6) 1 роР роЗроЯро╡ுроо்.

x \ yz 00 01 11 10
0 1 0 0 1
1 1 0 0 1

рокроЯி 3: 0s роР родொроХுрод்родро▓்

роироЯு роиிро░ро▓்роХро│ிро▓் (1, 3, 5, 7) роиாрой்роХு 0s роХொрог்роЯ роТро░ு роЪெроЩ்роХுрод்родாрой родொроХுродி роЙро│்ро│родு.

  • x рооாро▒ுроХிро▒родு (0→1).
  • y рооாро▒ுроХிро▒родு (0→1).
  • z' рооாро▒ாрооро▓் роЙро│்ро│родு (роЗро░ுроород்родிро▓் z=1 роОрой்рокродாроХுроо், роОройро╡ே ро╡ிроЯைропிро▓் z' роОрой роОро┤ுродுроХிро▒ோроо்).

POS роХ்роХாрой роХுро▒ிрок்рокு: родொроХுрок்рокிро▓் роиிро▓ைропாрой роородிрок்рокு 1 роЖроХ роЗро░ுрои்родாро▓், рооாро▒ிропை рооேро▒்роХோроЯுроЯрой் роОро┤ுродро╡ுроо். 0 роЖроХ роЗро░ுрои்родாро▓், рооேро▒்роХோроЯு роЗро▓்ро▓ாрооро▓் роОро┤ுродро╡ுроо்.

роЗро▒ுродி POS ро╡ிроЯை:

F = z'

4-рооாро▒ி роХுро▒ிропீроЯு роЙродாро░рогроо்

4 рооாро▒ிроХро│ுроХ்роХு (A, B, C, D), роХроЯ்роЯ роЕро│ро╡ு 4x4 (16 роЪெро▓்роХро│்) роЖроХுроо். родро░்роХ்роХроо் (logic) роЕродே рокோро▓ роЗро░ுроХ்роХுроо்.

роЙродாро░рогроо்: F(A,B,C,D) = ∏M(3, 5, 7, 8, 10, 11, 12, 13)

роЗродு роТро░ு POS роЪроорой்рокாроЯு роПройெройிро▓் роЗродு рокெро░ிроп роОро┤ுрод்родு M (Maxterms) роРрок் рокропрой்рокроЯுрод்родுроХிро▒родு.

  1. 4x4 роХроЯ்роЯрод்родை ро╡ро░ைропро╡ுроо்.
  2. ро╡ро░ிроЪைроХро│் AB (00, 01, 11, 10) рооро▒்ро▒ுроо் роиிро░ро▓்роХро│் CD (00, 01, 11, 10) роОрой рокெропро░ிроЯро╡ுроо்.
  3. 3, 5, 7, 8, 10, 11, 12, 13 роЖроХிроп роЪெро▓்роХро│ைроХ் роХрог்роЯுрокிроЯிрод்родு роЕроЩ்роХு 0s роР роЗроЯро╡ுроо்.
  4. рооீродрооுро│்ро│ роЪெро▓்роХро│ிро▓் 1s роР роЗроЯро╡ுроо்.
  5. POS роЪроорой்рокாроЯ்роЯைроХ் роХрог்роЯро▒ிроп 0s роР родொроХுроХ்роХро╡ுроо்.

ро╡ிро░ைро╡ாрой роХுро▒ிрок்рокு роЕроЯ்роЯро╡рогை

роЕроо்роЪроо் SOP (Sum of Products) POS (Product of Sums)
роХுро▒ிропீроЯு ∑ m (роЪிро▒ிроп m) ∏ M (рокெро░ிроп M)
K-Map роородிрок்рокு 1s роХொрог்роЯு роиிро░рок்рокро╡ுроо் 0s роХொрог்роЯு роиிро░рок்рокро╡ுроо்
родொроХுрод்родро▓் 1s роР родொроХுроХ்роХро╡ுроо் 0s роР родொроХுроХ்роХро╡ுроо்
рооாро▒ி ро╡ிродி 1 = рооாро▒ி, 0 = рооேро▒்роХோроЯு 0 = рооாро▒ி, 1 = рооேро▒்роХோроЯு

Thursday, February 12, 2026

Facebook Business Tools Beginner's Guide | Complete Tutorial Learn how Facebook Business Manager can help you run your business. See how to easily manage you company pages and ad accounts in one place in Sri Lanka

Facebook Business Tools Beginner's Guide | Complete Tutorial

Facebook Business Tools Mastery

Complete Step-by-Step Tutorial for Profiles, Pages, Groups, Marketplace & Ads

ЁЯСд Facebook Profile Setup Basics

Essential Setup Steps

Your personal Facebook profile is the foundation for all business activities. Never use your personal profile for business transactions!

Verify Email Address: Go to Settings → Personal Information → Contact and add your business email. Click verification link sent by Facebook.
Add Mobile Number: In same Settings section, add your business mobile number. Enable two-factor authentication for security.
Privacy Settings: Settings → Privacy → Set "Who can see your friends list?" to Only Me. Keep personal profile separate from business activities.
⚠️ Critical Warning

Facebook's policy prohibits using personal profiles for business purposes. Violation can lead to permanent account ban. Always create a separate Facebook Page for business activities.

ЁЯПв Facebook Business Page (Fan Page)

What is a Facebook Page?

A public profile created specifically for businesses, brands, or organizations. Unlike personal profiles, Pages:

  • ✅ Allow unlimited followers (no friend limits)
  • ✅ Provide business analytics (Page Insights)
  • ✅ Enable customer reviews and ratings
  • ✅ Support Facebook Shops for e-commerce
  • ✅ Allow team member access with role permissions

ЁЯЫа️ How to Create a Page (Step-by-Step)

From your Facebook homepage, click Menu (☰) → Pages → Create New Page
Enter Page Name (see naming tips below), select Business or Brand category
Add business details: Address (for Nuwara Eliya shop), phone number, website (if available)
Upload professional profile picture (logo) and cover photo (showcasing services)
Complete Page Verification (blue checkmark) for trust and SEO benefits

ЁЯФН SEO-Optimized Naming Strategy (Mobile Repair Example)

✅ GOOD Page Names for Nuwara Eliya Mobile Shop:

Option 1: "Nuwara Eliya Mobile Repair Hub" → Includes location + service + brandable term

Option 2: "TechFix Nuwara Eliya - Phone Repair & Sales" → Brand name + location + services

Option 3: "Nuwara Eliya Phone Doctor" → Memorable + location-specific

SEO TIP: Facebook search prioritizes exact keyword matches. Include:

  • ЁЯУН Location: "Nuwara Eliya", "Nuwara", "Little England"
  • ЁЯУ▒ Services: "Mobile Repair", "Phone Repair", "Screen Replacement"
  • ЁЯЫТ Products: "Mobile Shop", "Phone Sales", "Second Hand Phones"
❌ AVOID These Naming Mistakes

"Best Phone Repair!! ЁЯШНЁЯТп" → Emojis/symbols hurt SEO

"Mobile Repair Shop (Call 0771234567)" → Phone numbers in name look spammy

"Nuwara Eliya Mobile Repair Shop #1 Top Rated Best" → Keyword stuffing violates Facebook policies

ЁЯТб Best Practices to Maximize Engagement

ЁЯУ╕ Visual Content Rule

Posts with videos get 5x more engagement than text posts. Show repair process timelapses!

⏰ Optimal Posting Times

For Nuwara Eliya: 7-9 PM (after work) & 11 AM-1 PM (lunch break). Use Page Insights to confirm.

ЁЯТм Engagement Strategy

Reply to ALL comments within 1 hour. Facebook's algorithm rewards pages with fast response rates.

ЁЯП╖️ Hashtag Strategy

Use 2-3 location-specific hashtags: #NuwaraEliya #NuwaraMobileRepair #SriLankaTech

ЁЯТ░ Monetization Options

Pages with 10,000+ followers can access:

  • ✅ In-stream ads (short ads during your videos)
  • ✅ Fan subscriptions (monthly supporter payments)
  • ✅ Branded content partnerships
  • ✅ Facebook Shops (sell directly on Page)

Pro Tip: For mobile repair shops, focus on lead generation (calls/messages) rather than direct monetization. Track conversions with Facebook Pixel.

ЁЯСе Facebook Group for Business

What is a Facebook Group?

A community space where members share content around a common interest. For businesses:

  • ✅ Builds loyal customer community
  • ✅ Higher organic reach than Pages (members see 5-10x more posts)
  • ✅ Enables peer-to-peer support (customers help each other)
  • ✅ Perfect for exclusive offers and feedback collection

ЁЯЫа️ How to Create a Business Group

Click Menu (☰) → Groups → Create New Group
Name group strategically: "Nuwara Eliya Mobile Users Community" (not "Buy Phones Here" – sounds spammy)
Set privacy to Private (recommended for business) – members must request to join
Add 5-10 founding members (friends/family) to create initial activity
Create Group rules pinned to top: "No spam", "Respect others", "Post repair questions here"

ЁЯЪА Growth & Engagement Strategy

ЁЯУ▒ Mobile Repair Group Example Activities:

Weekly: "Tip Tuesday" – Share phone maintenance tips

Monthly: "Member Discount Day" – 15% off for group members who show membership

Daily: Answer 3+ technical questions to position yourself as expert

Special: "Broken Phone Photo Contest" – Most creative broken phone photo wins free screen repair

✅ DO: Value-First Approach

80% educational content (tips, tutorials), 20% promotional content

❌ DON'T: Hard Selling

Never post "BUY NOW!" daily. Groups hate pure sales pitches.

✅ DO: Member Spotlights

Feature customers who fixed phones: "Meet Saman who revived his water-damaged iPhone!"

✅ DO: Polls & Questions

"What's your biggest phone frustration?" → Generates 3x more comments than standard posts

ЁЯФН SEO & Discoverability

Unlike Pages, Groups have limited SEO value on Google. However:

  • ✅ Facebook Search indexes Group names and descriptions
  • ✅ Use keywords in Group description: "Mobile repair community for Nuwara Eliya residents"
  • ✅ Enable "Suggest this group to others" in settings
  • ✅ Cross-promote in your Page posts: "Join our repair community group!"

ЁЯЫТ Facebook Marketplace

What is Marketplace?

Facebook's built-in classifieds platform for buying/selling locally. Perfect for mobile shops to:

  • ✅ Sell refurbished phones
  • ✅ Clear old inventory
  • ✅ Offer repair services (list as "service" item)
  • ✅ Source parts from other sellers

ЁЯЫа️ How to List Items (Step-by-Step)

Tap Marketplace icon (ЁЯЫТ) → Sell Something → Item for Sale
Photos: Upload 5+ high-quality photos (front, back, sides, screen on, IMEI number)
Title: "iPhone 11 64GB - Excellent Condition - Nuwara Eliya" (include model, storage, condition, location)
Price: Research similar listings. For repairs: "Screen Replacement - Rs. 3,500"
Description: Include: IMEI check result, battery health %, warranty period, pickup location in Nuwara Eliya
Category: Select "Electronics → Cell Phones" or "Services → Repair Services"

Maximize Reach & Sales

ЁЯМЕ Refresh Listings Daily

Repost items every 24 hours. Facebook's algorithm favors fresh listings.

ЁЯУН Hyper-Local Targeting

Set location to "Nuwara Eliya" – buyers prefer same-city sellers for quick pickup.

ЁЯТм Quick Response = More Sales

Respond to inquiries within 15 minutes. Fast responders get 3x more sales.

⭐ Build Trust

Complete your seller profile with business Page link and positive reviews.

ЁЯУ▒ Repair Service Listing Example:

Title: "Professional Phone Screen Replacement - Nuwara Eliya - 30 Min Service"

Price: Rs. 2,500 - 4,500 (depending on model)

Description: "✅ Genuine parts only ✅ 3-month warranty ✅ Ready in 30 minutes ✅ Free diagnostics ✅ Shop location: Near Post Office, Nuwara Eliya ✅ Call/WhatsApp: 077XXXXXXX"

ЁЯТ░ Facebook Ads (Paid Promotion)

What are Facebook Ads?

Paid promotions that show your content to targeted audiences beyond your followers. Essential for:

  • ✅ Getting first 100 customers quickly
  • ✅ Promoting special offers (e.g., "Monsoon Season Screen Protection")
  • ✅ Targeting people searching for repairs in Nuwara Eliya
  • ✅ Remarketing to website visitors

ЁЯЪА Beginner's Ad Setup Guide

Go to Facebook Ads Manager (business.facebook.com)
Click + Create → Select objective: "Messages" (for repair shops) or "Store Traffic"
Targeting: Location: "Nuwara Eliya" (8km radius), Age: 18-65, Interests: "Smartphones", "Mobile accessories"
Budget: Start with Rs. 500/day for 7 days (test budget)
Ad Creative: Use video showing quick repair process with text overlay: "Broken Screen? Fixed in 30 mins in Nuwara Eliya!"
Call-to-Action: Button: "Send Message" → Pre-filled message: "Hi, I need screen repair for my [phone model]"

ЁЯТб Pro Tips for Mobile Repair Shops

ЁЯОп Hyper-Local Targeting

Target only 3-5km radius around Nuwara Eliya town for walk-in customers.

ЁЯУ▒ Device Targeting

Target users with older iPhone models (iPhone 7-10) – most likely to need repairs.

⏰ Time Targeting

Run ads 4-8 PM when people discover phone damage after work/day activities.

ЁЯТ░ Offer-Based Ads

"First-time customer? Get 20% off screen repair" converts 3x better than generic ads.

⚠️ Critical Ad Policy Reminder

Never promise "100% guaranteed repair" – Facebook bans ads making unrealistic guarantees. Say "professional repair service with 3-month warranty" instead.

ЁЯУК Tracking Success

For Rs. 500/day ad spend, expect:

  • ✅ 500-1,000 people reached daily
  • ✅ 15-30 messages/calls daily
  • ✅ 3-8 actual repair jobs daily (conversion rate: 10-25%)
  • ✅ Break-even at 2-3 repairs/day (if average repair = Rs. 2,500)

Key Metric: Cost Per Lead (CPL) should be under Rs. 150 for profitable mobile repair ads in Sri Lanka.

✨ Integrated Strategy for Nuwara Eliya Mobile Shop

ЁЯУ▒ Your 30-Day Action Plan:

Week 1: Create professional Page + verify with business documents

Week 2: Post 3x/week: 1 repair video, 1 tip graphic, 1 customer testimonial

Week 3: Launch Marketplace listings for 5 refurbished phones + repair services

Week 4: Start Rs. 300/day ad campaign targeting Nuwara Eliya residents with "Screen Repair Special"

Ongoing: Create Group for customers to share tips & get exclusive offers

ЁЯЪА Remember: Consistency Beats Perfection!

Posting daily for 30 days with average content beats posting once/week with "perfect" content.

Your first 100 customers come from showing up consistently – not from viral posts!

Tuesday, February 10, 2026

CSOP and CPOS Functions | GCE A/L )/L ICT | Unit 4 | Boolean Logic and Digital Circuit | in English Tamil | родрооிро┤ிро▓் Medium Notes Questions and Answers

Min Terms & Max Terms - Boolean Logic Explained | GCE A/L ICT Sri Lanka

[Boolean Logic] SOP/POS Terms Explained

GCE A/L ICT – Sri Lanka | Beginner Friendly Guide with Examples & Exercises

ЁЯТб Teacher's Tip: Min Terms and Max Terms are two sides of the same coin. Master them once — and K-Maps, SOP/POS forms will become easy!

9. CSOP and CPOS - The Canonical Forms

ЁЯФе Key Distinction:
CSOP = Canonical Sum of Products = Sum (OR) of ALL Min Terms where F=1
CPOS = Canonical Product of Sums = Product (AND) of ALL Max Terms where F=0

What is CSOP?

  • CSOP stands for Canonical Sum of Products
  • It's the standard form where the function is expressed as the sum (OR) of ALL minterms where F=1
  • Each minterm contains ALL variables in either true or complemented form
  • Also called "Full SOP" or "Standard SOP"
Example 1: F(X,Y,Z) = X'Y + XY'Z + XYZ

Step 1: Expand each term to include ALL variables

• X'Y = X'Y(Z + Z') = X'YZ + X'YZ'

• XY'Z = XY'Z (already has all 3 variables)

• XYZ = XYZ (already has all 3 variables)

Step 2: Combine all minterms

F = X'YZ + X'YZ' + XY'Z + XYZ

Step 3: Convert to minterm notation

X'YZ = 011 → m₃

X'YZ' = 010 → m₂

XY'Z = 101 → m₅

XYZ = 111 → m₇

CSOP: F = ╬гm(2,3,5,7)

What is CPOS?

  • CPOS stands for Canonical Product of Sums
  • It's the standard form where the function is expressed as the product (AND) of ALL maxterms where F=0
  • Each maxterm contains ALL variables in either true or complemented form
  • Also called "Full POS" or "Standard POS"
Example 2: F(X,Y,Z) = (X+Y)(X'+Z)(Y+Z)

Step 1: Expand each term to include ALL variables

• (X+Y) = (X+Y+Z)(X+Y+Z')

• (X'+Z) = (X'+Y+Z)(X'+Y'+Z)

• (Y+Z) = (X+Y+Z)(X'+Y+Z)

Step 2: Combine all maxterms (remove duplicates)

F = (X+Y+Z)(X+Y+Z')(X'+Y+Z)(X'+Y'+Z)

Step 3: Convert to maxterm notation

X+Y+Z = 000 → M₀

X+Y+Z' = 001 → M₁

X'+Y+Z = 010 → M₂

X'+Y'+Z = 011 → M₃

CPOS: F = ╬аM(0,1,2,3)

CSOP vs SSOP (Simplified SOP)

  • CSOP: All terms have ALL variables (canonical form)
  • SSOP: Some terms may have fewer variables (simplified form)
Example 3: F(X,Y,Z) = X'Y + XYZ

CSOP: F = X'Y(Z+Z') + XYZ = X'YZ + X'YZ' + XYZ = ╬гm(2,3,7)

SSOP: F = X'Y + XYZ (not all terms have all 3 variables)

Key Difference: SSOP is simplified and shorter, but CSOP is complete and systematic

Converting CSOP to CPOS (Step-by-Step)

Example 4: Convert F = ╬гm(1,3,5,6,7) to CPOS form

Step 1: Identify total number of possible terms

3 variables → 2³ = 8 terms (0 to 7)

Step 2: Find which terms are NOT in CSOP

CSOP has m₁, m₃, m₅, m₆, m₇

Missing terms: m₀, m₂, m₄

Step 3: These missing terms become the maxterms in CPOS

Missing minterms → m₀, m₂, m₄

Corresponding maxterms → M₀, M₂, M₄

Step 4: Write CPOS

F = ╬аM(0,2,4)

Why? Because CSOP = 1 for m₁,m₃,m₅,m₆,m₇ → CPOS = 0 for m₀,m₂,m₄

⚠️ Critical Note: CSOP and CPOS are NOT the same function! They represent the same logical function but in different canonical forms. CSOP focuses on when F=1, while CPOS focuses on when F=0.

10. Deriving Functions from Truth Tables

ЁЯУЭ Step-by-Step Method:
1. Create truth table with all variables
2. For CSOP: Find rows where F=1
3. For each such row, write the minterm
4. OR all minterms together
5. For CPOS: Find rows where F=0
6. For each such row, write the maxterm
7. AND all maxterms together
Example 5: Derive CSOP for F(X,Y,Z) from truth table
XYZF
0000
0011
0100
0111
1001
1010
1101
1111

Step 1: Find rows where F=1 → Rows 1, 3, 4, 6, 7

Step 2: Write minterms for these rows

Row 1 (0,0,1): X'Y'Z = m₁

Row 3 (0,1,1): X'YZ = m₃

Row 4 (1,0,0): XY'Z' = m₄

Row 6 (1,1,0): XYZ' = m₆

Row 7 (1,1,1): XYZ = m₇

Step 3: Write CSOP

F = m₁ + m₃ + m₄ + m₆ + m₇ = ╬гm(1,3,4,6,7)

Step 4: Write CPOS (find rows where F=0)

F=0 for rows 0, 2, 5 → M₀, M₂, M₅

F = ╬аM(0,2,5)

⚠️ Common Mistake: Students often confuse the row numbers. Remember:
  • For minterms: Row 0 = 000 = m₀, Row 1 = 001 = m₁, etc.
  • For maxterms: Row 0 = 000 = M₀, Row 1 = 001 = M₁, etc.

11. More Practice Exercises (With Answers)

Exercise 4

Find CSOP for F(x,y,z) = (x'y) + (xy')

✅ Click to see answer

Solution:

Step 1: Expand each term to include all 3 variables

x'y = x'y(z + z') = x'yz + x'yz'

xy' = xy'(z + z') = xy'z + xy'z'

Step 2: Combine all minterms

F = x'yz + x'yz' + xy'z + xy'z'

Step 3: Convert to minterm numbers

x'yz = 011 → m₃

x'yz' = 010 → m₂

xy'z = 101 → m₅

xy'z' = 100 → m₄

CSOP: F = ╬гm(2,3,4,5)

Exercise 5

Convert F = ╬гm(2,4,5,6,7) to CPOS form

✅ Click to see answer

Solution:

Step 1: Total terms for 3 variables = 8 (0-7)

Step 2: Find missing minterms

Present: m₂, m₄, m₅, m₆, m₇

Missing: m₀, m₁, m₃

Step 3: Convert missing minterms to maxterms

Missing minterms → m₀, m₁, m₃

Corresponding maxterms → M₀, M₁, M₃

CPOS: F = ╬аM(0,1,3)

Exercise 6

Derive CSOP and CPOS from the following truth table:

XYZF
0001
0010
0101
0111
1000
1011
1100
1111
✅ Click to see answer

Solution:

CSOP: Find rows where F=1 → Rows 0, 2, 3, 5, 7

Row 0: X'Y'Z' = m₀

Row 2: X'YZ' = m₂

Row 3: X'YZ = m₃

Row 5: XY'Z = m₅

Row 7: XYZ = m₇

CSOP: F = ╬гm(0,2,3,5,7)

CPOS: Find rows where F=0 → Rows 1, 4, 6

Row 1: X'Y'Z = M₁

Row 4: XY'Z' = M₄

Row 6: XYZ' = M₆

CPOS: F = ╬аM(1,4,6)

Exercise 7

Given F(x,y,z) = ╬гm(1,3,5,6,7), find:

(a) The truth table

(b) The CPOS form

✅ Click to see answer

Solution:

(a) Truth table:

XYZF
0000
0011
0100
0111
1000
1011
1101
1111

(b) CPOS form:

F=0 for rows 0, 2, 4 → M₀, M₂, M₄

CPOS: F = ╬аM(0,2,4)

Exercise 8

Given F(x,y,z) = ╬аM(0,4,6,8,10,12,14,15), find CSOP

✅ Click to see answer

Solution:

Step 1: Total terms for 4 variables = 16 (0-15)

Step 2: Find missing maxterms

Present: M₀, M₄, M₆, M₈, M₁₀, M₁₂, M₁₄, M₁₅

Missing: M₁, M₂, M₃, M₅, M₇, M₉, M₁₁, M₁₃

Step 3: Convert missing maxterms to minterms

Missing maxterms → M₁, M₂, M₃, M₅, M₇, M₉, M₁₁, M₁₃

Corresponding minterms → m₁, m₂, m₃, m₅, m₇, m₉, m₁₁, m₁₃

CSOP: F = ╬гm(1,2,3,5,7,9,11,13)

Exercise from your Image

F(x,y,z) = ╬гm(1,3,5,6,7)

F(x,y,z) = ╬гm(2,4,5,6,7)

F(x,y,z) = ╬аM(0,4,6,8,10,12,14,15)

Solutions:

1. F = ╬гm(1,3,5,6,7) → CPOS = ╬аM(0,2,4)

2. F = ╬гm(2,4,5,6,7) → CPOS = ╬аM(0,1,3)

3. F = ╬аM(0,4,6,8,10,12,14,15) → CSOP = ╬гm(1,2,3,5,7,9,11,13)

9. Quick Summary Cheat Sheet

  • Min Term = AND of all variables → Output = 1 for ONE row → Notation: m₀, m₁...
  • Max Term = OR of all variables → Output = 0 for ONE row → Notation: M₀, M₁...
  • CSOP = Sum (OR) of ALL Min Terms where F=1 → ╬гm(...)
  • CPOS = Product (AND) of ALL Max Terms where F=0 → ╬аM(...)
  • SSOP = Simplified SOP (not all terms have all variables)
  • SPOS = Simplified POS (not all terms have all variables)
  • ✓ For n variables: Total terms = 2тБ┐
  • ✓ Min/Max conversion: Missing terms swap between ╬гm and ╬аM
  • ✓ mс╡в = (Mс╡в)' → They are complements!
ЁЯУЪ A/L Exam Tip: When asked to "express in canonical form":
  • If given SOP → Expand to Min Terms → Write ╬гm(...)
  • If given POS → Expand to Max Terms → Write ╬аM(...)

Prepared with care for Sri Lankan A/L ICT Students | Practice Truth Tables Daily!

Sunday, February 8, 2026

Min Term and Max Term | AL ICT Sri Lanka | Unit 4 | Boolean Logic and Digital Circuit | in English and Tamil | родрооிро┤ிро▓்

Min Terms & Max Terms - Boolean Logic Explained | GCE A/L ICT Sri Lanka

[Boolean Logic] Min Terms & Max Terms Explained

GCE A/L ICT – Sri Lanka | Beginner Friendly Guide with Examples & Exercises

ЁЯТб Teacher's Tip: Min Terms and Max Terms are two sides of the same coin. Master them once — and K-Maps, SOP/POS forms will become easy!

1. What are Min Terms and Max Terms?

Min Term (Product Term)

  • A Min Term is a Boolean expression where ALL variables appear exactly once, connected by AND (·) operators.
  • Also called a Product Term because AND is like multiplication (e.g., X·Y = XY).
  • Each Min Term produces output 1 (HIGH) for exactly ONE combination of inputs.
  • Represented by lowercase m with subscript (e.g., m₀, m₁).
Example (2 variables X, Y):
Possible Min Terms: XY, X'Y, XY', X'Y'
→ Total = 2² = 4 Min Terms (m₀ to m₃)

Max Term (Sum Term)

  • A Max Term is a Boolean expression where ALL variables appear exactly once, connected by OR (+) operators.
  • Also called a Sum Term because OR is like addition.
  • Each Max Term produces output 0 (LOW) for exactly ONE combination of inputs.
  • Represented by uppercase M with subscript (e.g., M₀, M₁).
Example (2 variables X, Y):
Possible Max Terms: X+Y, X'+Y, X+Y', X'+Y'
→ Total = 2² = 4 Max Terms (M₀ to M₃)

2. Why "Min" Term and "Max" Term?

ЁЯза Memory Trick:
Min Term = Minimal condition to make output = 1
Max Term = Maximal condition to make output = 0
  • Min Term: It's the "smallest" (minimal) combination of inputs that forces F=1. Any other input change makes it 0.
  • Max Term: It's the "largest" (maximal) combination of inputs that forces F=0. Any other input change makes it 1.

3. Truth Tables for 2 Variables (X, Y)

Min Terms Table

X Y Min Term Name Output = 1 when?
0 0 X'Y' m₀ Only when X=0, Y=0
0 1 X'Y m₁ Only when X=0, Y=1
1 0 XY' m₂ Only when X=1, Y=0
1 1 XY m₃ Only when X=1, Y=1

Max Terms Table

X Y Max Term Name Output = 0 when?
0 0 X+Y M₀ Only when X=0, Y=0
0 1 X+Y' M₁ Only when X=0, Y=1
1 0 X'+Y M₂ Only when X=1, Y=0
1 1 X'+Y' M₃ Only when X=1, Y=1
ЁЯФС Key Insight: For the SAME input row:
• Min Term = 1
• Max Term = 0
→ They are complements: mс╡в = (Mс╡в)'

4. SOP (Sum of Products) vs POS (Product of Sums)

Feature SOP (Min Term Form) POS (Max Term Form)
Basis Uses Min Terms Uses Max Terms
Structure OR of AND terms
(e.g., XY + X'Y)
AND of OR terms
(e.g., (X+Y)(X'+Y))
Output focus Describes when F = 1 Describes when F = 0
Canonical form F = ╬гm(1,3) F = ╬аM(0,2)

5. Step-by-Step Examples

Example 1: F = XY + XZ (SOP Form)

Variables: X, Y, Z (3 variables → 2³ = 8 possible Min Terms)

Step 1: Expand each term to include ALL variables
• XY = XY(Z + Z') = XYZ + XYZ'
• XZ = XZ(Y + Y') = XYZ + XY'Z

Step 2: Combine and remove duplicates
F = XYZ + XYZ' + XYZ + XY'Z = XYZ + XYZ' + XY'Z

Step 3: Map to Min Term numbers (X=MSB, Z=LSB)
• XYZ → 111 → m₇
• XYZ' → 110 → m₆
• XY'Z → 101 → m₅

Final Answer: F = ╬гm(5,6,7) = m₅ + m₆ + m₇

Example 2: F = (X+Y)(X+Z) (POS Form)

Note: Your query said "(X+Y)+(X+Z)" — but POS uses AND (·) between OR terms, not OR (+).

Step 1: Expand each Max Term to include ALL variables
• (X+Y) = (X+Y+ZZ') = (X+Y+Z)(X+Y+Z')
• (X+Z) = (X+Z+YY') = (X+Y+Z)(X+Y'+Z)

Step 2: Combine and remove duplicates
F = (X+Y+Z)(X+Y+Z')(X+Y+Z)(X+Y'+Z) = (X+Y+Z)(X+Y+Z')(X+Y'+Z)

Step 3: Map to Max Term numbers (X=MSB, Z=LSB)
• X+Y+Z → 000 → M₀
• X+Y+Z' → 001 → M₁
• X+Y'+Z → 010 → M₂

Final Answer: F = ╬аM(0,1,2) = M₀ · M₁ · M₂

6. Converting Between Min Terms and Max Terms

Golden Rule: For n variables:
• Min Terms where F=1 → Max Terms where F=0 are the remaining terms
• If F = ╬гm(1,3,5) for 3 variables (0-7), then F = ╬аM(0,2,4,6,7)

Example: F = ╬гm(1,2) for 2 variables (X,Y)

  • Total terms = 4 (0 to 3)
  • F=1 for m₁, m₂ → F=0 for m₀, m₃
  • ∴ F = ╬аM(0,3)

Boolean Proof: X' + Y' = (XY)' ← De Morgan's Theorem

  • Left side: Max Term (OR form)
  • Right side: Complement of Min Term (AND form)

7. Complete 3-Variable Example (X, Y, Z)

Row X Y Z Min Term m# Max Term M#
0000X'Y'Z'm₀X+Y+ZM₀
1001X'Y'Zm₁X+Y+Z'M₁
2010X'YZ'm₂X+Y'+ZM₂
3011X'YZm₃X+Y'+Z'M₃
4100XY'Z'm₄X'+Y+ZM₄
5101XY'Zm₅X'+Y+Z'M₅
6110XYZ'm₆X'+Y'+ZM₆
7111XYZm₇X'+Y'+Z'M₇

8. Practice Exercises (With Answers)

Exercise 1

For function F(X,Y) = X'Y + XY', write:

(a) Min Term list (╬гm)

(b) Max Term list (╬аM)

✅ Click to see answer

Solution:

(a) F = X'Y + XY' = m₁ + m₂ → ╬гm(1,2)

(b) Total terms = 4. F=0 for rows 0 and 3 → ╬аM(0,3)

Exercise 2

Convert F = ╬гm(0,3,5,6) for 3 variables to POS form.

✅ Click to see answer

Solution:

Total Min Terms for 3 variables = 8 (0 to 7)

F=1 for m₀,m₃,m₅,m₆ → F=0 for m₁,m₂,m₄,m₇

∴ F = ╬аM(1,2,4,7)

Exercise 3

Prove using truth table: X' + Y' = (XY)'

✅ Click to see answer
XYXY(XY)'X'Y'X'+Y'
0001111
0101101
1001011
1110000

Columns (XY)' and X'+Y' are identical → Proved! (This is De Morgan's Theorem)

9. Quick Summary Cheat Sheet

  • Min Term = AND of all variables → Output = 1 for ONE row → Notation: m₀, m₁...
  • Max Term = OR of all variables → Output = 0 for ONE row → Notation: M₀, M₁...
  • SOP = Sum (OR) of Min Terms → Focus on F=1 rows
  • POS = Product (AND) of Max Terms → Focus on F=0 rows
  • ✓ For n variables: Total terms = 2тБ┐
  • ✓ Min/Max conversion: Missing terms swap between ╬гm and ╬аM
  • ✓ mс╡в = (Mс╡в)' → They are complements!
ЁЯУЪ A/L Exam Tip: When asked to "express in canonical form":
  • If given SOP → Expand to Min Terms → Write ╬гm(...)
  • If given POS → Expand to Max Terms → Write ╬аM(...)

Prepared with care for Sri Lankan A/L ICT Students | Practice Truth Tables Daily!

[рокூро▓ிропрой் родро░்роХ்роХроо்] роХுро▒ைрои்родрокроЯ்роЪ роЙро▒ுрок்рокுроХро│் & роЕродிроХрокроЯ்роЪ роЙро▒ுрок்рокுроХро│் ро╡ிро│роХ்роХроо்

GCE A/L ICT – роЗро▓роЩ்роХை | роОроЯுрод்родுроХ்роХாроЯ்роЯுроХро│் & рокропிро▒்роЪிроХро│ுроЯрой் роЖро░роо்рок роиிро▓ை роирог்рокро░் ро╡ро┤ிроХாроЯ்роЯி

ЁЯТб роЖроЪிро░ிропро░் роХுро▒ிрок்рокு: роХுро▒ைрои்родрокроЯ்роЪ роЙро▒ுрок்рокுроХро│் рооро▒்ро▒ுроо் роЕродிроХрокроЯ்роЪ роЙро▒ுрок்рокுроХро│் роТро░ே роиாрогропрод்родிрой் роЗро░ு рокроХ்роХроЩ்роХро│். роЗро╡ро▒்ро▒ை роТро░ுрооுро▒ை роХро▒்ро▒ுроХ்роХொрог்роЯாро▓் — K-Maps, SOP/POS ро╡роЯிро╡роЩ்роХро│் роОро│ிродாроХிро╡ிроЯுроо்!

1. роХுро▒ைрои்родрокроЯ்роЪ роЙро▒ுрок்рокுроХро│் рооро▒்ро▒ுроо் роЕродிроХрокроЯ்роЪ роЙро▒ுрок்рокுроХро│் роОрой்ро▒ாро▓் роОрой்рой?

роХுро▒ைрои்родрокроЯ்роЪ роЙро▒ுрок்рокு (рокெро░ுроХ்роХро▓் роЙро▒ுрок்рокு)

  • роХுро▒ைрои்родрокроЯ்роЪ роЙро▒ுрок்рокு роОрой்рокродு роТро░ு рокூро▓ிропрой் роХோро╡ைропாроХுроо், роЗродிро▓் роЕройைрод்родு рооாро▒ிроХро│ுроо் роЪро░ிропாроХ роТро░ுрооுро▒ை AND (·) роЖрокро░ேроЯ்роЯро░்роХро│ாро▓் роЗрогைроХ்роХрок்рокроЯ்роЯிро░ுроХ்роХுроо்.
  • AND роЖройродு рокெро░ுроХ்роХро▓ைрок் рокோро▓ (роО.роХா., X·Y = XY) роЗро░ுрок்рокродாро▓் роЗродு рокெро░ுроХ்роХро▓் роЙро▒ுрок்рокு роОрой்ро▒ுроо் роЕро┤ைроХ்роХрок்рокроЯுроХிро▒родு.
  • роТро╡்ро╡ொро░ு роХுро▒ைрои்родрокроЯ்роЪ роЙро▒ுрок்рокுроо் роЙро│்ро│ீроЯுроХро│ிрой் роЪро░ிропாроХ роТро░ு роЪேро░்роХ்роХைроХ்роХு ро╡ெро│ிропீроЯ்роЯை 1 (HIGH) роЖроХ роЙро░ுро╡ாроХ்роХுроо்.
  • роЪிро▒ிроп роОро┤ுрод்родு m рооро▒்ро▒ுроо் роЪுрок்ро╕்роХிро░ிрок்роЯ் (роО.роХா., m₀, m₁) роЖро▓் роХுро▒ிроХ்роХрок்рокроЯுроо்.
роОроЯுрод்родுроХ்роХாроЯ்роЯு (2 рооாро▒ிроХро│் X, Y):
роЪாрод்родிропрооாрой роХுро▒ைрои்родрокроЯ்роЪ роЙро▒ுрок்рокுроХро│்: XY, X'Y, XY', X'Y'
→ рооொрод்родроо் = 2² = 4 роХுро▒ைрои்родрокроЯ்роЪ роЙро▒ுрок்рокுроХро│் (m₀ рооுродро▓் m₃ ро╡ро░ை)

роЕродிроХрокроЯ்роЪ роЙро▒ுрок்рокு (роХூроЯ்роЯро▓் роЙро▒ுрок்рокு)

  • роЕродிроХрокроЯ்роЪ роЙро▒ுрок்рокு роОрой்рокродு роТро░ு рокூро▓ிропрой் роХோро╡ைропாроХுроо், роЗродிро▓் роЕройைрод்родு рооாро▒ிроХро│ுроо் роЪро░ிропாроХ роТро░ுрооுро▒ை OR (+) роЖрокро░ேроЯ்роЯро░்роХро│ாро▓் роЗрогைроХ்роХрок்рокроЯ்роЯிро░ுроХ்роХுроо்.
  • OR роЖройродு роХூроЯ்роЯро▓ைрок் рокோро▓ роЗро░ுрок்рокродாро▓் роЗродு роХூроЯ்роЯро▓் роЙро▒ுрок்рокு роОрой்ро▒ுроо் роЕро┤ைроХ்роХрок்рокроЯுроХிро▒родு.
  • роТро╡்ро╡ொро░ு роЕродிроХрокроЯ்роЪ роЙро▒ுрок்рокுроо் роЙро│்ро│ீроЯுроХро│ிрой் роЪро░ிропாроХ роТро░ு роЪேро░்роХ்роХைроХ்роХு ро╡ெро│ிропீроЯ்роЯை 0 (LOW) роЖроХ роЙро░ுро╡ாроХ்роХுроо்.
  • рокெро░ிроп роОро┤ுрод்родு M рооро▒்ро▒ுроо் роЪுрок்ро╕்роХிро░ிрок்роЯ் (роО.роХா., M₀, M₁) роЖро▓் роХுро▒ிроХ்роХрок்рокроЯுроо்.
роОроЯுрод்родுроХ்роХாроЯ்роЯு (2 рооாро▒ிроХро│் X, Y):
роЪாрод்родிропрооாрой роЕродிроХрокроЯ்роЪ роЙро▒ுрок்рокுроХро│்: X+Y, X'+Y, X+Y', X'+Y'
→ рооொрод்родроо் = 2² = 4 роЕродிроХрокроЯ்роЪ роЙро▒ுрок்рокுроХро│் (M₀ рооுродро▓் M₃ ро╡ро░ை)

2. "роХுро▒ைрои்родрокроЯ்роЪ" роЙро▒ுрок்рокு рооро▒்ро▒ுроо் "роЕродிроХрокроЯ்роЪ" роЙро▒ுрок்рокு роОрой்ро▒ு роПрой்?

ЁЯза роиிройைро╡ிро▓் роХொро│்ро│ுроо் ро╡ро┤ி:
роХுро▒ைрои்родрокроЯ்роЪ роЙро▒ுрок்рокு = ро╡ெро│ிропீроЯு = 1 роЖроХ роЗро░ுроХ்роХ родேро╡ைропாрой роХுро▒ைрои்родрокроЯ்роЪ роиிрокрои்родройை
роЕродிроХрокроЯ்роЪ роЙро▒ுрок்рокு = ро╡ெро│ிропீроЯு = 0 роЖроХ роЗро░ுроХ்роХ родேро╡ைропாрой роЕродிроХрокроЯ்роЪ роиிрокрои்родройை
  • роХுро▒ைрои்родрокроЯ்роЪ роЙро▒ுрок்рокு: F=1 роЖроХ роЗро░ுроХ்роХ роЗродு роЙро│்ро│ீроЯுроХро│ிрой் "роЪிро▒ிроп" (роХுро▒ைрои்родрокроЯ்роЪ) роЪேро░்роХ்роХைропாроХுроо். ро╡ேро▒ு роОрои்род роЙро│்ро│ீроЯ்роЯு рооாро▒்ро▒рооுроо் роЗродை 0 роЖроХ்роХுроо்.
  • роЕродிроХрокроЯ்роЪ роЙро▒ுрок்рокு: F=0 роЖроХ роЗро░ுроХ்роХ роЗродு роЙро│்ро│ீроЯுроХро│ிрой் "рокெро░ிроп" (роЕродிроХрокроЯ்роЪ) роЪேро░்роХ்роХைропாроХுроо். ро╡ேро▒ு роОрои்род роЙро│்ро│ீроЯ்роЯு рооாро▒்ро▒рооுроо் роЗродை 1 роЖроХ்роХுроо்.

3. 2 рооாро▒ிроХро│ுроХ்роХாрой роЙрог்рооை роЕроЯ்роЯро╡рогை (X, Y)

роХுро▒ைрои்родрокроЯ்роЪ роЙро▒ுрок்рокுроХро│் роЕроЯ்роЯро╡рогை

X Y роХுро▒ைрои்родрокроЯ்роЪ роЙро▒ுрок்рокு рокெропро░் ро╡ெро│ிропீроЯு = 1 роОрок்рокோродு?
0 0 X'Y' m₀ X=0, Y=0 роОрой்рокродро▒்роХு роороЯ்роЯுроо்
0 1 X'Y m₁ X=0, Y=1 роОрой்рокродро▒்роХு роороЯ்роЯுроо்
1 0 XY' m₂ X=1, Y=0 роОрой்рокродро▒்роХு роороЯ்роЯுроо்
1 1 XY m₃ X=1, Y=1 роОрой்рокродро▒்роХு роороЯ்роЯுроо்

роЕродிроХрокроЯ்роЪ роЙро▒ுрок்рокுроХро│் роЕроЯ்роЯро╡рогை

X Y роЕродிроХрокроЯ்роЪ роЙро▒ுрок்рокு рокெропро░் ро╡ெро│ிропீроЯு = 0 роОрок்рокோродு?
0 0 X+Y M₀ X=0, Y=0 роОрой்рокродро▒்роХு роороЯ்роЯுроо்
0 1 X+Y' M₁ X=0, Y=1 роОрой்рокродро▒்роХு роороЯ்роЯுроо்
1 0 X'+Y M₂ X=1, Y=0 роОрой்рокродро▒்роХு роороЯ்роЯுроо்
1 1 X'+Y' M₃ X=1, Y=1 роОрой்рокродро▒்роХு роороЯ்роЯுроо்
ЁЯФС рооுроХ்роХிроп роЙро│்ро│ுрогро░்ро╡ு: роЕродே роЙро│்ро│ீроЯ்роЯு ро╡ро░ிроХ்роХு:
• роХுро▒ைрои்родрокроЯ்роЪ роЙро▒ுрок்рокு = 1
• роЕродிроХрокроЯ்роЪ роЙро▒ுрок்рокு = 0
→ роЗро╡ை роиிро░рок்рокிроХро│்: mс╡в = (Mс╡в)'

4. SOP (рокெро░ுроХ்роХро▓் роЙро▒ுрок்рокுроХро│ிрой் роХூроЯ்роЯро▓்) vs POS (роХூроЯ்роЯро▓் роЙро▒ுрок்рокுроХро│ிрой் рокெро░ுроХ்роХро▓்)

роЕроо்роЪроо் SOP (роХுро▒ைрои்родрокроЯ்роЪ роЙро▒ுрок்рокு ро╡роЯிро╡роо்) POS (роЕродிроХрокроЯ்роЪ роЙро▒ுрок்рокு ро╡роЯிро╡роо்)
роЕроЯிрок்рокроЯை роХுро▒ைрои்родрокроЯ்роЪ роЙро▒ுрок்рокுроХро│ை рокропрой்рокроЯுрод்родுроХிро▒родு роЕродிроХрокроЯ்роЪ роЙро▒ுрок்рокுроХро│ை рокропрой்рокроЯுрод்родுроХிро▒родு
роХроЯ்роЯрооைрок்рокு AND роЙро▒ுрок்рокுроХро│ிрой் OR
(роО.роХா., XY + X'Y)
OR роЙро▒ுрок்рокுроХро│ிрой் AND
(роО.роХா., (X+Y)(X'+Y))
ро╡ெро│ிропீроЯ்роЯு роХро╡ройроо் F = 1 роОрок்рокோродு роОрой்рокродை ро╡ிро╡ро░ிроХ்роХிро▒родு F = 0 роОрок்рокோродு роОрой்рокродை ро╡ிро╡ро░ிроХ்роХிро▒родு
роХேройாройிроХ்роХро▓் ро╡роЯிро╡роо் F = ╬гm(1,3) F = ╬аM(0,2)

5. рокроЯிрок்рокроЯிропாрой роОроЯுрод்родுроХ்роХாроЯ்роЯுроХро│்

роОроЯுрод்родுроХ்роХாроЯ்роЯு 1: F = XY + XZ (SOP ро╡роЯிро╡роо்)

рооாро▒ிроХро│்: X, Y, Z (3 рооாро▒ிроХро│் → 2³ = 8 роЪாрод்родிропрооாрой роХுро▒ைрои்родрокроЯ்роЪ роЙро▒ுрок்рокுроХро│்)

рокроЯி 1: роТро╡்ро╡ொро░ு роЙро▒ுрок்рокைропுроо் роЕройைрод்родு рооாро▒ிроХро│ைропுроо் роЪேро░்роХ்роХுроо் ро╡роХைропிро▓் ро╡ிро░ிро╡ாроХ்роХро╡ுроо்
• XY = XY(Z + Z') = XYZ + XYZ'
• XZ = XZ(Y + Y') = XYZ + XY'Z

рокроЯி 2: роЗрогைрод்родு роироХро▓்роХро│ை роиீроХ்роХро╡ுроо்
F = XYZ + XYZ' + XYZ + XY'Z = XYZ + XYZ' + XY'Z

рокроЯி 3: роХுро▒ைрои்родрокроЯ்роЪ роЙро▒ுрок்рокு роОрог்роХро│ுроЯрой் рокொро░ுрод்родро╡ுроо் (X=MSB, Z=LSB)
• XYZ → 111 → m₇
• XYZ' → 110 → m₆
• XY'Z → 101 → m₅

роЗро▒ுродி ро╡ிроЯை: F = ╬гm(5,6,7) = m₅ + m₆ + m₇

роОроЯுрод்родுроХ்роХாроЯ்роЯு 2: F = (X+Y)(X+Z) (POS ро╡роЯிро╡роо்)

роХுро▒ிрок்рокு: роЙроЩ்роХро│் ро╡ிройро╡ро▓் "(X+Y)+(X+Z)" роОрой்ро▒ு роХூро▒ிропродு — роЖройாро▓் POS роЖройродு OR роЙро▒ுрок்рокுроХро│ுроХ்роХு роЗроЯைропே AND (·) роРрок் рокропрой்рокроЯுрод்родுроХிро▒родு, OR (+) роЕро▓்ро▓.

рокроЯி 1: роТро╡்ро╡ொро░ு роЕродிроХрокроЯ்роЪ роЙро▒ுрок்рокைропுроо் роЕройைрод்родு рооாро▒ிроХро│ைропுроо் роЪேро░்роХ்роХுроо் ро╡роХைропிро▓் ро╡ிро░ிро╡ாроХ்роХро╡ுроо்
• (X+Y) = (X+Y+ZZ') = (X+Y+Z)(X+Y+Z')
• (X+Z) = (X+Z+YY') = (X+Y+Z)(X+Y'+Z)

рокроЯி 2: роЗрогைрод்родு роироХро▓்роХро│ை роиீроХ்роХро╡ுроо்
F = (X+Y+Z)(X+Y+Z')(X+Y+Z)(X+Y'+Z) = (X+Y+Z)(X+Y+Z')(X+Y'+Z)

рокроЯி 3: роЕродிроХрокроЯ்роЪ роЙро▒ுрок்рокு роОрог்роХро│ுроЯрой் рокொро░ுрод்родро╡ுроо் (X=MSB, Z=LSB)
• X+Y+Z → 000 → M₀
• X+Y+Z' → 001 → M₁
• X+Y'+Z → 010 → M₂

роЗро▒ுродி ро╡ிроЯை: F = ╬аM(0,1,2) = M₀ · M₁ · M₂

6. роХுро▒ைрои்родрокроЯ்роЪ роЙро▒ுрок்рокுроХро│் рооро▒்ро▒ுроо் роЕродிроХрокроЯ்роЪ роЙро▒ுрок்рокுроХро│ுроХ்роХு роЗроЯைропே рооாро▒்ро▒ுродро▓்

родроЩ்роХ ро╡ிродி: n рооாро▒ிроХро│ுроХ்роХு:
• F=1 роЖроХ роЙро│்ро│ роХுро▒ைрои்родрокроЯ்роЪ роЙро▒ுрок்рокுроХро│் → F=0 роЖроХ роЙро│்ро│ роЕродிроХрокроЯ்роЪ роЙро▒ுрок்рокுроХро│் рооீродрооுро│்ро│ роЙро▒ுрок்рокுроХро│்
• F = ╬гm(1,3,5) роОрой்ро▒ாро▓் 3 рооாро▒ிроХро│ுроХ்роХு (0-7), рокிрой்ройро░் F = ╬аM(0,2,4,6,7)

роОроЯுрод்родுроХ்роХாроЯ்роЯு: F = ╬гm(1,2) роОрой்рокродு 2 рооாро▒ிроХро│ுроХ்роХு (X,Y)

  • рооொрод்род роЙро▒ுрок்рокுроХро│் = 4 (0 рооுродро▓் 3 ро╡ро░ை)
  • F=1 роЖроХ роЙро│்ро│родு m₁, m₂ роХ்роХு → F=0 роЖроХ роЙро│்ро│родு m₀, m₃ роХ்роХு
  • ∴ F = ╬аM(0,3)

рокூро▓ிропрой் роиிро░ூрокрогроо்: X' + Y' = (XY)' ← роЯி рооாро░்роХройிрой் родேро▒்ро▒роо்

  • роЗроЯродு рокроХ்роХроо்: роЕродிроХрокроЯ்роЪ роЙро▒ுрок்рокு (OR ро╡роЯிро╡роо்)
  • ро╡ро▓родு рокроХ்роХроо்: роХுро▒ைрои்родрокроЯ்роЪ роЙро▒ுрок்рокிрой் роиிро░рок்рокி (AND ро╡роЯிро╡роо்)

7. рооுро┤ுрооைропாрой 3-рооாро▒ி роОроЯுрод்родுроХ்роХாроЯ்роЯு (X, Y, Z)

ро╡ро░ி X Y Z роХுро▒ைрои்родрокроЯ்роЪ роЙро▒ுрок்рокு m# роЕродிроХрокроЯ்роЪ роЙро▒ுрок்рокு M#
0000X'Y'Z'm₀X+Y+ZM₀
1001X'Y'Zm₁X+Y+Z'M₁
2010X'YZ'm₂X+Y'+ZM₂
3011X'YZm₃X+Y'+Z'M₃
4100XY'Z'm₄X'+Y+ZM₄
5101XY'Zm₅X'+Y+Z'M₅
6110XYZ'm₆X'+Y'+ZM₆
7111XYZm₇X'+Y'+Z'M₇

8. рокропிро▒்роЪி рокропிро▒்роЪிроХро│் (ро╡ிроЯைроХро│ுроЯрой்)

рокропிро▒்роЪி 1

F(X,Y) = X'Y + XY' роЪாро░்рокுроХ்роХு, роОро┤ுродро╡ுроо்:

(a) роХுро▒ைрои்родрокроЯ்роЪ роЙро▒ுрок்рокு рокроЯ்роЯிропро▓் (╬гm)

(b) роЕродிроХрокроЯ்роЪ роЙро▒ுрок்рокு рокроЯ்роЯிропро▓் (╬аM)

✅ ро╡ிроЯைропைрок் рокாро░்роХ்роХ роХிро│ிроХ் роЪெроп்ропро╡ுроо்

родீро░்ро╡ு:

(a) F = X'Y + XY' = m₁ + m₂ → ╬гm(1,2)

(b) рооொрод்род роЙро▒ுрок்рокுроХро│் = 4. F=0 роЖроХ роЙро│்ро│родு ро╡ро░ி 0 рооро▒்ро▒ுроо் 3 роХ்роХு → ╬аM(0,3)

рокропிро▒்роЪி 2

3 рооாро▒ிроХро│ுроХ்роХு F = ╬гm(0,3,5,6) роР POS ро╡роЯிро╡род்родிро▒்роХு рооாро▒்ро▒ро╡ுроо்.

✅ ро╡ிроЯைропைрок் рокாро░்роХ்роХ роХிро│ிроХ் роЪெроп்ропро╡ுроо்

родீро░்ро╡ு:

3 рооாро▒ிроХро│ுроХ்роХாрой рооொрод்род роХுро▒ைрои்родрокроЯ்роЪ роЙро▒ுрок்рокுроХро│் = 8 (0 рооுродро▓் 7 ро╡ро░ை)

F=1 роЖроХ роЙро│்ро│родு m₀,m₃,m₅,m₆ роХ்роХு → F=0 роЖроХ роЙро│்ро│родு m₁,m₂,m₄,m₇ роХ்роХு

∴ F = ╬аM(1,2,4,7)

рокропிро▒்роЪி 3

роЙрог்рооை роЕроЯ்роЯро╡рогைропைрок் рокропрой்рокроЯுрод்родி роиிро░ூрокிроХ்роХро╡ுроо்: X' + Y' = (XY)'

✅ ро╡ிроЯைропைрок் рокாро░்роХ்роХ роХிро│ிроХ் роЪெроп்ропро╡ுроо்
XYXY(XY)'X'Y'X'+Y'
0001111
0101101
1001011
1110000

(XY)' рооро▒்ро▒ுроо் X'+Y' роиெроЯுро╡ро░ிроЪைроХро│் роТро░ே рооாродிро░ிропாроХ роЙро│்ро│рой → роиிро░ூрокிроХ்роХрок்рокроЯ்роЯродு! (роЗродு роЯி рооாро░்роХройிрой் родேро▒்ро▒роо்)

9. ро╡ிро░ைро╡ாрой роЪுро░ுроХ்роХ роЪீроЯ்роЯு

  • роХுро▒ைрои்родрокроЯ்роЪ роЙро▒ுрок்рокு = роЕройைрод்родு рооாро▒ிроХро│ிрой் AND → роТро░ு ро╡ро░ிроХ்роХு ро╡ெро│ிропீроЯு = 1 → роХுро▒ிропீроЯு: m₀, m₁...
  • роЕродிроХрокроЯ்роЪ роЙро▒ுрок்рокு = роЕройைрод்родு рооாро▒ிроХро│ிрой் OR → роТро░ு ро╡ро░ிроХ்роХு ро╡ெро│ிропீроЯு = 0 → роХுро▒ிропீроЯு: M₀, M₁...
  • SOP = роХுро▒ைрои்родрокроЯ்роЪ роЙро▒ுрок்рокுроХро│ிрой் роХூроЯ்роЯро▓் (OR) → F=1 ро╡ро░ிроХро│ிро▓் роХро╡ройроо்
  • POS = роЕродிроХрокроЯ்роЪ роЙро▒ுрок்рокுроХро│ிрой் рокெро░ுроХ்роХро▓் (AND) → F=0 ро╡ро░ிроХро│ிро▓் роХро╡ройроо்
  • ✓ n рооாро▒ிроХро│ுроХ்роХு: рооொрод்род роЙро▒ுрок்рокுроХро│் = 2тБ┐
  • ✓ роХுро▒ைрои்родрокроЯ்роЪ/роЕродிроХрокроЯ்роЪ рооாро▒்ро▒роо்: ╬гm рооро▒்ро▒ுроо் ╬аM роЗроЯைропே роХாрогாрооро▓் рокோрой роЙро▒ுрок்рокுроХро│் рооாро▒்ро▒рок்рокроЯுроХிрой்ро▒рой
  • ✓ mс╡в = (Mс╡в)' → роЗро╡ை роиிро░рок்рокிроХро│்!
ЁЯУЪ A/L родேро░்ро╡ு роЙродро╡ிроХ்роХுро▒ிрок்рокு: "роХேройாройிроХ்роХро▓் ро╡роЯிро╡род்родிро▓் ро╡ெро│ிрок்рокроЯுрод்родро╡ுроо்" роОрой்ро▒ு роХேроЯ்роХрок்рокроЯ்роЯாро▓்:
  • SOP роХொроЯுроХ்роХрок்рокроЯ்роЯிро░ுрои்родாро▓் → роХுро▒ைрои்родрокроЯ்роЪ роЙро▒ுрок்рокுроХро│ுроХ்роХு ро╡ிро░ிро╡ாроХ்роХро╡ுроо் → ╬гm(...) роОрой роОро┤ுродро╡ுроо்
  • POS роХொроЯுроХ்роХрок்рокроЯ்роЯிро░ுрои்родாро▓் → роЕродிроХрокроЯ்роЪ роЙро▒ுрок்рокுроХро│ுроХ்роХு ро╡ிро░ிро╡ாроХ்роХро╡ுроо் → ╬аM(...) роОрой роОро┤ுродро╡ுроо்

роЗро▓роЩ்роХை A/L ICT рооாрогро╡ро░்роХро│ுроХ்роХாроХ роХро╡ройрооாроХ родропாро░ிроХ்роХрок்рокроЯ்роЯродு | родிройрооுроо் роЙрог்рооை роЕроЯ்роЯро╡рогைроХро│ை рокропிро▒்роЪி роЪெроп்ропро╡ுроо்!